A TOTAL SYNTHESIS OF NATURAL CERULENIN FROM D-GLUCOSE M. Pietraszkiewicz and P.Sinaÿ^{*} Laboratoire de Biochimie Structurale, E.R.A. 739,

U.E.R. de Sciences Fondamentales et Appliquées, 45045 Orléans Cédex, France.

p-glucose has served as a chiral synthon in a total synthesis of the fungal metabolite cerulenin.

The fungal metabolite cerulenin <u>14</u> possesses a very interesting spectrum of biological activities¹ and three total syntheses of dl-cerulenin have been reported². On the other hand, two independent syntheses of (+) and (-) tetrahydrocerulenin from carbohydrates have been recently achieved³, resulting in a new assignment of the absolute configuration of the molecule as that shown. This letter describes a total synthesis of natural cerulenin <u>14</u> from <u>D</u>-glucose.

The mesylate <u>1</u> is easily available⁴ from <u>D</u>-glucose and was used as the starting chiral synthon. Treatment of <u>1</u> with lithium aluminum hydride in tetrahydrofuran (50°C, 4h) gave the known⁵ alcohol <u>2</u> (81 %), m.p. 63° C (ether-hexane), which was quantitatively converted (2-methoxy-propene in chloroform with one drop of trifluoroacetic acid) into <u>3</u>, $(\alpha)_{\underline{D}}^{20}$ -16° (c 2.58, hexane). Hydroboration of <u>3</u> (diborane-THF, 0°C, 10 h) provided the alcohol <u>4</u> (69 %), $(\alpha)_{\underline{D}}^{20}$ -8° (c 1.29, CHCl₃), which was directly converted (<u>p</u>-toluenesulfonyl chloride-pyridine) into tosylate <u>5</u>, $(\alpha)_{\underline{D}}^{20}$ -10° (c 2.15, CHCl₃), then (ethylene diamine complex of lithium acetylide-DMSO, 15° C, 1h) into <u>6</u> (42% from 4), $(\alpha)_{\underline{D}}^{20}$ -4° (c 3.18, hexane)⁶. The lithio derivative of <u>6</u> (PhLi-THF) was coupled with <u>trans</u>-crotyl chloride in the presence of a catalytic amount of sodium iodide (20°, 12h) and the resulting acetylenic compound $(\{\alpha\}_{\underline{D}}^{20}-3°$ in hexane) was reduced (lithium-liquid amnonia-<u>t</u>-butanol-amnonium sulfate, 20min) to <u>trans-trans 7</u> (90 % from <u>6</u>), $\{\alpha\}_{\underline{D}}^{20}$ -16° (c 3.16, hexane). Acid hydrolysis (trifluoroacetic acid-chloroform-methanol) gave the alcohol <u>8</u> (99 %), $\{\alpha\}_{\underline{D}}^{20}$ -20° (c 3.36, CHCl₃). Acid hydrolysis (trifluoroacetic acid-water, 9:1, 20° C, 40 min) of <u>9</u> (obtained after treatment of alcohol <u>8</u> with methylsulfonyl chloride in pyridine) gave compound <u>10</u> (83%), $\{\alpha\}_{\underline{D}}^{20}$ + 21° (c 3.17, CHCl₃). Treatment of <u>10</u> with sodium methoxide in THF provided the anhydro

OH OF H⁺

2

4

3

1

sugar <u>11</u> (65%), $\{\alpha\}_{\underline{p}}^{20}$ -20° (c 1, CHCl₃). Oxidation with Collins reagent⁷ gave the lactone <u>12</u> (88 %), $\{\alpha\}_{\underline{p}}^{20}$ + 45° (c 2.44 ,CHCl₃). Ammonolysis of <u>12</u> with ammonium hydroxide in methanol (room temperature, 30 min) led to the amide <u>13</u> (90%), $\{\alpha\}_{\underline{p}}^{20}$ + 70° (c 1.66 ,CHCl₃). The final conversion of amido alcohol <u>13</u> into natural cerulenin <u>14</u> was effected by treatment with Collins reagent⁷ (25°C,4h) (90%), m.p. 93° C(benzene), $\{\alpha\}_{\underline{p}}^{20}$ -10° (c1,CHCl₃)⁸. Compound <u>6</u> may by regarded as a useful synthon for the preparation of various analogs of natural cerulenin. This work is now in progress in our laboratory.

Acknowledgment

We thank Boehringer France for generous financial support of this work.

- 1. S. Omura, Bacteriol.Rev., 40,681 (1976) and references cited.
- (a) R.K. Boeckman, Jr. and E.W. Thomas, <u>J.Am.Chem.Soc.</u>, <u>101</u>,978 (1979);(b) A.A.Jakubowski
 F.S. Guziec, Jr. and M.Tishler, <u>Tetrahedron Lett.</u>, 2399 (1977); (c) E.J. Corey and D.R.
 Williams, Tetrahedron Lett., 3847 (1977).
- H.Ohrui and S. Emoto, <u>Tetrahedron Lett.</u>, 2095 (1978); J.R. Pougny and P.Sinaÿ, <u>ibid</u>, 3301 (1978).
- 4. J.K.N. Jones and J.L. Thompson, Can.J.Chem., 35,955 (1957) and references cited.
- 5. D. Horton and W.N. Turner, Carbohydr.Res., 1,444 (1966).

6. Ethynylation was initially attempted on easily available 5-deoxy-1,2-<u>O</u>-isopropylidene-3-<u>O</u>methylsulfonyl-6-<u>O</u>-<u>p</u>-toluenesulfonyl- α -<u>P</u>-glucofuranose, but resulted only in high yield cyclization according to the following scheme :

- 7. J.C. Collins, W.W. Hess and F.J. Franck, Tetrahedron Lett., 3363 (1968).
- ¹H n.m.r. and i.r. were identical with natural cerulenin. Selected n.m.r. characteristics 8. are summarized here : 1 (acetone- d_6) δ 1.31 and 1.47 (6H,2s), 3.17 (3H,s), 4.85 (1H,d , $J_{1,2}^{4Hz,H-2}, 4.96(1H, J_{3,4}^{3.5Hz,H-3}), 6.01 (1H, d, H-1); 2 (CDC1₃) & 1.32 and 1.50 (6H, 2s),$ 2.19 (1H,d,OH), 4.10 (1H,dd,J_{3.4}4Hz,J_{3.0H}5Hz,H-3), 4.57 (1H,d,J_{1.2}4Hz,H-2), 5.95 (1H,d, H-1); $\underline{3}$ (CDC1₃) δ 1.25,1.32 and 1.41 (12H), 3.13 (3H,s), 4.13 (1H,d,J_{3,4}4Hz,H-3),4.42 $(1H,d,J_{1,2}^{4Hz},H-2)$, 5.80 (1H,d,H-1); <u>6</u> $(CC1_4)$ δ 1.20 and 1.50 (12H), 1.70-2.00 (3H,m), 2.20-2.50 (2H,m), 3.20 (3H,s), 4.00-4.30 (2H,m,H-3 and H-4),4.45 (1H,d,J $_{1,2}$ 4Hz,H-2),5.70 $(1H,d,H-1); \underline{7} (CC1_4) \delta 1.50-1.70 (5H,m), 1.90-2.30 (2H,m), 2.50-2.80 (2H,m), 3.18 (3H,s),$ 3.90-4.10 (2H,m,H-3 and H-4),4.45 (1H,d,J_{1,2}4Hz,H-2), 5.30-5.50 (4H,m), 5.70 (1H,d,J_{1,2} 4Hz,H-1); $\underline{8}$ (CDC1₃) δ 1.30 and 1.48 (6H,2s), 2.60-2.85 (2H,m), 3.95-4.25 (2H,m), 4.50 $(1H,d,J_{1,2}4Hz,H-2)$, 5.35-5.60 (4H,m), 5.90 (1H,d,H-1); <u>9</u> (CC1₄) δ 1.45 and 1.30 (6H,2s), 1.55-1.90 (5H,m), 2.00-2.30 (2H,m), 2.60-2.85 (2H,m), 3.02 (3H,s), 4.10-4.30 (1H,m,H-4), 4.70 (1H,d,J_{1,2}4Hz,H-2),4.83 (1H,d,J_{3,4}2.5Hz,H-3),5.30-5.60 (4H,m), 5.83 (2H,d,H-1); <u>11</u> $(CC1_4)\delta$ 1.55-1.80 (5H,m),2.00-2.40(2H,m), 2.60-2.90(2H,m), 3.30 (1H,s,OH),3.48-3.70 (2H,m,H-2 and H-3), 4.02 (1H,t,H-4), 5.30-5.55 (4H,m); 12 (CC1₄) & 1.60-1.90 (5H,m), 2.10-1.00 (5H,m), 2.10-1.02.40 (2H,m), 2.60-2.90 (2H,m), 3.67 (1H,d,H-3), 3.91 (1H,d,J_{2.3}3Hz,H-2), 4.56 (1H,t,H-4); <u>13</u> $(CDC1_3)$ δ 3.60 (2H,m,H-2 and H-3), 5.30-5.70 (4H,m), 6.30 (2H,s,amide).

Note added on proof : during the examination of this manuscript by referees, a similar synthesis has been reported : N.Sueda,H.Ohrui and H. Kuzukara, <u>Tetrahedron Lett.</u>, 2039 (1979).

(Received in France 28 June 1979)